

V1.10

2025/11/14

+

API Example Usage Guide

HTRA API Example Usage Guide 1

Contents

Version Management ... 8

1. C/C++ ... 9

1.1 Configure Development Environment .. 9

1.2 Usage Process for C++ Examples... 14

 Usage of General C++ Examples .. 14

 Use of the AM/FM demodulation example... 15

 Usage of the recording and playback example.. 16

1.3 Device-related ... 19

 Get device information ... 19

 Device standby .. 19

 GNSS-related ... 19

 Get and modify the IP address of the NX device ... 19

 Mode switching time consumption ... 19

1.4 SWP mode .. 19

 Standard spectrum acquisition ... 19

 Simplified configuration mode .. 20

 Maximum and minimum hold ... 20

 Average Trace .. 20

 Automatic Configuration Measurement ... 20

 Frequency Compensation ... 20

 Function execution time, sweep speed, and throughput 20

 Obtain spectrum peak values .. 21

 Signals and Spurious.. 21

 Simultaneous Acquisition of Spectrum and IQ .. 21

 Reading SWP Stream Disk Data from Application Software 21

HTRA API Example Usage Guide 2

 Using GNSS 10MHz Reference Clock ... 21

 External Trigger Mode ... 21

 Trace Alignment Method ... 21

 Number of Spectrum Frames Obtainable within a Certain Time 22

 External Trigger Calibration of Internal 10MHz Reference Clock 22

 Phase noise measurement .. 22

 Channel power measurement ... 22

 Adjacent Channel Power Ratio Measurement .. 22

 Percentage occupied bandwidth Measurement ... 22

 XdB Occupied Bandwidth Measurement .. 22

 IM3 measurements ... 23

 Frequency interval matching RBW .. 23

 Using an External 10MHz Reference Clock .. 23

1.5 IQS Mode .. 23

 Obtain Fixed Number or Continuous Stream of IQ Data 23

 Simplified configuration mode .. 23

 IQ data converted to voltage V units ... 23

 Time taken to issue configuration and acquire IQ ... 23

 IQ to Spectrum Data .. 24

 IQ to Spectrum (using liquid library version) ... 24

 FM Demodulation Playback .. 24

 FM Demodulation Data Analysis ... 24

 AM Demodulation Playback .. 24

 AM Demodulation Data Analysis ... 24

 Digital Downconversion .. 24

 Digital Low-Pass Filter ... 25

 Audio Analysis ... 25

 Read the IQS stream disk data from Application Software 25

HTRA API Example Usage Guide 3

 Record IQ data in .wav format ... 25

 .wav changed to .csv.. 25

 Streaming and reading IQ data ... 25

 Multithreaded acquisition, processing, and streaming of IQ data 25

 GNSS1PPS trigger .. 25

 IQS multi-device synchronization .. 26

 External Trigger ... 26

 Timer Trigger ... 26

 Level Trigger(pre-trigger)... 26

 Level Trigger (Trigger delay) .. 26

 Using GNSS 10MHz Reference Clock ... 26

 Fixed Step Multi-Frequency IQ Data Acquisition ... 26

1.6 DET Mode ... 27

 Obtain detection data for fixed points or continuous streams. 27

 Simplified configuration mode .. 27

 Read the DET stream disk data of Application Software 27

 Pulse detection (to be opened later) .. 27

1.7 RTA mode .. 27

 Obtain real-time spectrum data for fixed points or continuous stream 27

 Simplified configuration mode .. 27

 Read the RTA stream disk data of Application Software 27

 Time consumption of each frame of data in RTA mode .. 28

1.8 ASG Signal Source (optional) .. 28

 Output single tone/sweep/power scan signals ... 28

2. Digital Demodulation (optional) .. 28

3. Qt .. 29

3.1 Configure Development Environment .. 29

3.2 Qt Example Usage Process .. 38

HTRA API Example Usage Guide 4

3.3 Qt Example Description .. 40

4. Python ... 41

4.1 Configure Development Environment .. 41

4.2 Python Example Usage Process .. 43

4.3 Python Example Description ... 44

 Get device information ... 44

 Obtain Standard Spectrum Data ... 44

 Obtain IQ Data for a Fixed Number of Points or Duration..................................... 44

 Obtain Power Detection Data for a Fixed Number of Points or Duration 44

 Obtain real-time spectrum data for a fixed number of points or duration 45

 IQ to Spectrum Data .. 45

 GNSS Related ... 45

5. Matlab ... 46

5.1 Configure Development Environment .. 46

 Install MSYS2 ... 46

 Configure Matlab .. 48

 Description of call htra_api.dll .. 52

5.2 Matlab example usage process ... 54

5.3 Introduction to Accompanying Examples ... 55

 Get device information ... 55

 Obtain Standard Spectrum Data ... 56

 Create multiple markers to display the frequency and power of the markers. 56

 Collect the peak spectrum every five minutes. ... 56

 Obtain continuous stream or fixed number of IQ data. .. 56

 The acquired IQ data is converted into spectrum data. .. 56

 Acquire continuous stream or fixed number of power detection data. 56

 Acquire continuous stream or fixed duration real-time spectrum data. 57

HTRA API Example Usage Guide 5

 Internal signal source output signal. ... 57

 Lock GNSS antenna and DOCXO oscillator. .. 57

 Multi-machine synchronization ... 57

6. C# .. 58

6.1 Configure Development Environment .. 58

 Development Environment Confirmation ... 58

 Project Setup ... 58

6.2 C# Example Usage Process .. 67

6.3 C# Example Descriptions... 69

 Get device information ... 69

 Obtain Standard Spectrum Data ... 69

 Obtain IQ Data for a Fixed Number of Points or Duration..................................... 69

 Obtain Power Detection Data for a Fixed Number of Points or Duration 69

 Obtain real-time spectrum data for a fixed number of points or duration 69

 Output single-tone signal .. 69

 AM/FM Demodulation .. 70

 IQ to Spectrum Data .. 70

 Low-pass filtering .. 70

 Digital Downconversion .. 70

 Phase noise test .. 70

7. Java (to be supplemented) ... 71

8. Labview ... 72

8.1 Configure Development Environment .. 72

 Export library functions from htra_api.dll using LabVIEW 72

 Using the API in the LabVIEW environment .. 79

 Use the newly exported library functions in an existing project. 83

 Generate an exe from the vi in Labview .. 86

HTRA API Example Usage Guide 6

8.2 The usage process of Labview examples .. 90

8.3 Labview Example Description ... 93

 Get device information ... 93

 Standard spectrum acquisition ... 93

 Obtain IQ Data for a Fixed Number of Points or Duration..................................... 93

 Streaming and reading IQ data ... 93

 IQ to Spectrum Data .. 93

 Digital Downconversion .. 93

 Audio Analysis ... 94

 Obtain Power Detection Data for a Fixed Number of Points or Duration 94

 Obtain real-time spectrum data for a fixed number of points or duration 94

 ASG Signal Source Output Signal ... 94

9. Linux .. 95

9.1 Environment Version Compatibility Self-Check .. 95

9.2 Accompanying documentation ... 97

 HTRA_C++_Examples .. 97

 HTRA_Qt_Examples .. 97

 HTRA_Python_Examples ... 98

 HTRA_Gnuradio ... 98

 Install_HTRA_SDK .. 99

9.3 Driver file configuration .. 101

9.4 C++ example usage and project creation .. 102

 C++ example usage .. 102

 C++ Project Creation and Compilation .. 103

 C++ Project Cross-Compilation .. 108

9.5 Using Qt Examples and Project Creation .. 111

 Using Qt Examples... 111

 Qt Project Creation and Compilation .. 115

HTRA API Example Usage Guide 7

 Cross-compiling Qt projects .. 127

9.6 Usage of Python examples and project creation .. 132

 Usage of Python examples .. 132

 Python Project Creation .. 134

9.7 GNU Radio Module Construction and Use ... 135

 Architecture and Operating System Requirements ... 135

 Installing and Configuration GNU Radio .. 135

 Building the HRTA OOT Module .. 136

 Uninstalling the HTRA OOT Module .. 138

 Running the HTRA OOT Module .. 138

 Acquiring IQ Stream .. 141

 AM Demodulation ... 143

 FM Demodulation ... 144

 QPSK Demodulation .. 145

 QAM Demodulation .. 146

 DAB Demodulation .. 147

 WLAN Signal Demodulation .. 148

9.8 Java (to be supplemented) ... 150

HTRA API Example Usage Guide 8

Version Management

Updated Description Sheet

Version Description Date

V1.10

1. Modified: Modify the translation content

2. Added: Add Version Management Chapter

3. Added: Supplementing GNU Radio usage examples

11/14/2025

V1.9 1.Added: Add GNU Radio Module Construction and Use chapter 10/24/2025

V1.8 1. Initial Version 9/20/2025

HTRA API Example Usage Guide 9

1. C/C++

1.1 Configure Development Environment

1. Open Visual Studio 2019 and create a new project.

2. Select the Empty project, and click next.

3. Fill in the project name and storage location, uncheck "Place solution and project

in the same directory", and then click Create.

HTRA API Example Usage Guide 10

4. Once created, copy the htra_api folder from the delivery USB drive

Windows\HTRA_API\x86 to the same level directory of the project (this example

is for configuring an x86 architecture project; if you want to configure an x64

architecture project, copy the Windows\HTRA_API\x64\htra_api folder).

5. Double-click to open SWP.sln, and create a new SWP.cpp file in the source files.

6. Click on "Project" in the menu bar and select "Properties".

HTRA API Example Usage Guide 11

7. Select "Win32" for the configuration platform, and set the environment variable

in Configuration Properties -> Debug to Path=..\htra_api (when configuring for

the x64 architecture, select "x64" for the configuration platform; otherwise, steps

7-10 of the configuration process are the same as for the x86 architecture

(Win32)).

8. Set the Additional Include Directories in Configuration Properties -> C/C++ ->

General to $(SolutionDir)\htra_api.

HTRA API Example Usage Guide 12

9. Set the Additional Library Directories in Configuration Properties -> Linker ->

General to $(SolutionDir)\htra_api.

10. Add htra_api.lib to the Additional Dependencies in Configuration Properties ->

Linker -> Input.

HTRA API Example Usage Guide 13

11. At this point, the environment configuration is complete, and programming

development can begin. You can refer to the C/C++ examples included on the

USB drive, specifically in

Windows\HTRA_API_Example\HTRA_C++_Examples\HTRA_C++_Examples.

HTRA API Example Usage Guide 14

1.2 Usage Process for C++ Examples

 Usage of General C++ Examples

The usage process for general C++ examples included on the USB drive is as follows:

1. Use Visual Studio to open the solution HTRA_C++_Examples.sln located in the

folder Windows\HTRA_API_Example\HTRA_C++_Examples on the provided USB

drive.

2. Click on the right side to access the HTRA_C++_Examples project and click on the

main.cpp file within it.

3. Each routine in the C++ example is encapsulated in a separate function. To use

the example, simply uncomment it (multiple examples cannot be used

simultaneously). For instance, when testing the Device_GetDeviceInfo routine,

uncomment it, save, select the expected compilation architecture (both x86 and

HTRA API Example Usage Guide 15

x64 are acceptable), and click run. The image shown indicates that the device is

running normally.

 Use of the AM/FM demodulation example

1. Open the solution Htra_Demodulation.sln in the folder

Windows\HTRA_C++_Examples\Htra_Demodulation on the supplied USB drive

using Visual Studio.

2. Click on the HTRA_C++_Examples project on the right and click on the main.cpp

file.

3. C++ send with the example of each routine is encapsulated in a separate function,

the use of the example can be uncommented (not at the same time to use more

than one example). For example, to test the DSP_FMDemod routine, uncomment

it and save it, select the compilation architecture (both x86 and x64), and click

run.

HTRA API Example Usage Guide 16

 Usage of the recording and playback example

1. Open the solution Htra_RecordingandPlayBack.sln located in the folder

Windows\HTRA_API_Example\Htra_RecordingandPlayBack on the provided USB

drive using Visual Studio.

2. Click on the right side to access the Htra_RecordingandPlayBack project and click

on the main.cpp file within it.

3. Each routine in the recording and playback example is encapsulated in a separate

function. To use the example, simply uncomment it (multiple examples cannot be

used simultaneously).

1. Usage of the reading example:

1) For example, when reading SWP mode stream disk data, uncomment the

HTRA API Example Usage Guide 17

SWPMode_PlayBack function and save.

2) Place the recorded file data from SWP mode into the folder

"Windows\HTRA_C++_Examples\Htra_RecordingandPlayBack\Htra_Recordingan

dPlayBack\data".

3) Click to enter SWPMode_PlayBack.cpp and modify the name of the recorded file

in the SWPMode_PlayBack() function.

4) Running the program will generate the parsed data file "SWPMode_Data.txt" in

the data folder under the SWP mode.

HTRA API Example Usage Guide 18

2. Usage of the recording example:

1) For example, when testing the IQSMode_Recording routine, uncomment and save.

2) Click to enter the IQSMode_Recording() function, configure the parameters, and

run the program. You can find the recorded file data in the

"Windows\HTRA_C++_Examples\Htra_RecordingandPlayBack\Htra_Recordingan

dPlayBack\data" folder under the IQS mode.

HTRA API Example Usage Guide 19

1.3 Device-related

 Get device information

Device_GetDeviceInfo.cpp: Get device information, including API version, USB version,

device model, device UID, MCU version, FPGA version, and device temperature.

 Device standby

Device_SysPowerState.cpp: An example of setting the device's standby state, which

can be configured to normal operating state or RF powered down state (low power).

 GNSS-related

Device_AboutGNSS.cpp: Retrieves information such as latitude, longitude, altitude,

and time obtained from the GNSS module, acquires GNSS-related latitude and time

information from MeasAuxInfo in SWP mode, and obtains latitude and time

information from IQStream.DeviceState in IQS mode.

 Get and modify the IP address of the NX device

Device_GetAndSetIP.cpp: Retrieve the device's IP address and modify it using the

device UID or the device's current IP address.

 Mode switching time consumption

Device_MeasureModeSwitchTime.cpp: Get the time required for the current host

computer to switch between different modes.

1.4 SWP mode

 Standard spectrum acquisition

SWP_GetSpectrum_Standard.cpp: Obtain spectrum data by calling the function

HTRA API Example Usage Guide 20

interface.

 Simplified configuration mode

SWP_EZGetPartialSweep.cpp: Quickly acquire spectrum data using a simplified

configuration.

 Maximum and minimum hold

SWP_MaxHold_MinHold.cpp: Set the trace mode to MaxHold or MinHold, and use

SWP_ResetTraceHold to reset the hold.

 Average Trace

SWP_TraceAverage.cpp: Average processing of the acquired trace.

 Automatic Configuration Measurement

SWP_AutoSetMeasure.cpp: Automatically configures relevant parameters based on

specific SWP applications, completing measurements by issuing automatic

configuration parameters.

 Frequency Compensation

SWP_SetFreqCompensation.cpp: When an external attenuator is present,

compensation can be applied to the corresponding frequency band to ensure that the

test results remain accurate.

 Function execution time, sweep speed, and throughput

SWP_TimeOfSetFunction.cpp:Obtains the call duration of the SWP_Configuration,

SWP_GetPartialSweep, and SWP_GetFullSweep functions, along with the sweep

speed and throughput under the current configuration.

HTRA API Example Usage Guide 21

 Obtain spectrum peak values

SWP_PickMaxPower.cpp: Obtain the maximum power point of the current spectrum

and its corresponding frequency point.

 Signals and Spurious

SWP_GetSpectrum_SigAndSpur.cpp: This can distinguish between signals and

spurious after obtaining spectrum data.

 Simultaneous Acquisition of Spectrum and IQ

SWP_GetSpectrumAndIQS.cpp: This allows for the simultaneous acquisition of

spectrum data and IQ data.

 Reading SWP Stream Disk Data from Application Software

SWPMode_PlayBack.cpp: This can read the recorded file data in SWP mode from

Application Software and write the read spectrum data into SWP Mode_Data.txt.

 Using GNSS 10MHz Reference Clock

SWP_GNSSReferenceClock.cpp: This uses a high-quality GNSS module's 10MHz

reference clock in SWP mode.

 External Trigger Mode

SWP_GetSpectrum_Trigger.cpp: This obtains spectrum data when the trigger source is

set to external trigger.

 Trace Alignment Method

SWP_GetSpectrum_TraceAlign.cpp: Obtain spectrum data when the trace alignment

method is set to align to the starting frequency or align to the center frequency.

HTRA API Example Usage Guide 22

 Number of Spectrum Frames Obtainable within a Certain Time

SWP_Fixedtime_GetFrames.cpp: Loop 50 times to obtain 10 seconds of spectrum data,

resulting in the average number of spectrum frames that can be obtained within 10

seconds.

 External Trigger Calibration of Internal 10MHz Reference Clock

SWP_GetSpectrum_Calibration.cpp: An example of the device calibrating the clock via

GNSS-1PPS or through external trigger.

 Phase noise measurement

SWP_Meas_PhaseNoise.cpp: Measuring the single-sideband phase noise (unit:

dBc/Hz) of the received signal at the user-specified frequency deviation, supports

multi-frequency point configuration.

 Channel power measurement

SWP_Meas_ChannelPower.cpp: measures the channel power of the received signal.

 Adjacent Channel Power Ratio Measurement

SWP_Meas_ACPR.cpp: measure the adjacent channel power ratio of the received

signal.

 Percentage occupied bandwidth Measurement

SWP_Meas_OBW.cpp: measures the occupied bandwidth of the received signal in

percentage.

 XdB Occupied Bandwidth Measurement

SWP_Meas_XdBBW.cpp: measures the occupied bandwidth of the received signal in

XdB.

HTRA API Example Usage Guide 23

 IM3 measurements

SWP_Meas_IM3.cpp: IM3 measurement of the received signal.

 Frequency interval matching RBW

SWP_RBW_Spaced_Trace.cpp: makes the frequency interval between two points of

the trace close to the set RBW value.

 Using an External 10MHz Reference Clock

SWP_RefCLKSource_External.cpp: use external 10MHz reference clock. (Take the use

of external 10MHz reference clock in SWP mode as an example, the same method is

used in other modes).

1.5 IQS Mode

 Obtain Fixed Number or Continuous Stream of IQ Data

IQS_GetIQ_Standard.cpp: Obtain a fixed number or continuous stream of IQ data

under professional configuration.

 Simplified configuration mode

IQS_GetIQ_EZStandard.cpp: Quickly obtain IQ data using a simplified configuration.

 IQ data converted to voltage V units

IQS_ScaleIQDataToVolts.cpp: Converts the acquired IQ data into data in volts (V).

 Time taken to issue configuration and acquire IQ

IQS_ConfigandGetIQ_Time.cpp: Obtains the call duration of the IQS_Configuration

and IQS_GetIQStream_PM1 functions.

HTRA API Example Usage Guide 24

 IQ to Spectrum Data

DSP_IQSToSpectrum.cpp: Converts the acquired time-domain IQ data into spectrum

data using spectral analysis methods.

 IQ to Spectrum (using liquid library version)

IQS_ToSpectrumByLiquid.cpp: Uses the liquid library to convert the acquired time-

domain IQ data into spectrum data through spectral analysis methods.

 FM Demodulation Playback

DSP_FMDemod.cpp: Performs FM demodulation on the IQ data and plays the

demodulated audio.

 FM Demodulation Data Analysis

IQS_FMDataAnalysis.cpp: Audio analysis of the IQ data after FM demodulation to get

the audio voltage, audio frequency, SINAD and total harmonic distortion.

 AM Demodulation Playback

DSP_AM_Demod.cpp: Performs AM demodulation on IQ data and plays the

demodulated audio.

 AM Demodulation Data Analysis

IQS_FMDataAnalysis.cpp: Audio analysis of the IQ data after AM demodulation to get

the audio voltage, audio frequency, SINAD and total harmonic distortion.

 Digital Downconversion

DSP_DDC.cpp: Resamples the obtained IQ data.

HTRA API Example Usage Guide 25

 Digital Low-Pass Filter

DSP_LPF.cpp: Perform low-pass filtering on the obtained IQ data.

 Audio Analysis

IQS_AudioAnalysis.cpp: Performs audio analysis on the demodulated IQ data to obtain

audio voltage, audio frequency, SINAD, and total harmonic distortion.

 Read the IQS stream disk data from Application Software

IQSMode_PlayBack.cpp: Parses the recorded file data in IQS mode from Application

Software and writes the read spectrum data into the IQSMode_Data.txt file.

 Record IQ data in .wav format

IQSMode_Recording.cpp: Stores the acquired IQ data in .wav format.

 .wav changed to .csv

IQSMode_WavToCsv.cpp: Parses and extracts I and Q channel data from the .wav

recording file data in IQS mode, converting it into a .CSV format file for saving.

 Streaming and reading IQ data

IQS_GetIQToTxt.cpp: Writes the obtained IQ data into a .txt file.

 Multithreaded acquisition, processing, and streaming of IQ data

IQS_Multithread_GetIQ_FFT_Write: Simultaneously acquires IQ data, performs FFT,

and writes IQ data into a .txt file.

 GNSS1PPS trigger

IQS_GNSS_1PPS.cpp: Configure the trigger source to be the 1PPS signal provided by

the internal GNSS system.

HTRA API Example Usage Guide 26

 IQS multi-device synchronization

IQS_MultiDevSync_fixed.cpp: Multiple devices simultaneously collect the same signal

at the same time.

 External Trigger

IQS_ExternalTrigger.cpp: Configure the trigger source as external trigger.

 Timer Trigger

IQS_TimerTrigger.cpp: Configure the trigger source as timer trigger.

 Level Trigger(pre-trigger)

IQS_LevelTrigger_PreTriggerr.cpp: configure the trigger source as level trigger and set

the pre-trigger time.

 Level Trigger (Trigger delay)

IQS_LevelTrigger_TriggerDelay.cpp: configure the trigger source to be level trigger and

set the trigger delay time.

 Using GNSS 10MHz Reference Clock

IQS_Enable_GNSS_10MHz.cpp: Use a high-quality GNSS module's 10MHz reference

clock in IQS mode.

 Fixed Step Multi-Frequency IQ Data Acquisition

IQS_SetFreqScan: Configure the start and end frequencies and frequency points of IQ

in advance. After configuring once, the data will be collected sequentially according to

the set frequency points.

HTRA API Example Usage Guide 27

1.6 DET Mode

 Obtain detection data for fixed points or continuous streams.

DETMode_Standard.cpp: Obtain detection data for fixed points or continuous streams.

 Simplified configuration mode

DETMode_EZStandard.cpp: Quickly obtain detection data through a simplified

configuration.

 Read the DET stream disk data of Application Software

DETMode_PlayBack.cpp: Read the recorded files in DET mode from Application

Software and output the detection data to the DETMode_Data.txt file.

 Pulse detection (to be opened later)

1.7 RTA mode

 Obtain real-time spectrum data for fixed points or continuous

stream

RTAMode_Standard.cpp: Obtain real-time spectrum data for a fixed number of points

(duration) or continuous stream.

 Simplified configuration mode

RTAMode_EZStandard.cpp: Quickly obtain real-time spectrum data through simple

configuration.

 Read the RTA stream disk data of Application Software

RTAMode_PlayBack.cpp: Read the recorded file data in RTA mode from Application

HTRA API Example Usage Guide 28

Software, while being able to specify reading a certain packet of data, and write the

read spectrum data to the RTAMode_Data.txt file.

 Time consumption of each frame of data in RTA mode

RTAMode_Standard_perframe.cpp: Acquire 100 frames of data and calculate the

average processing time for each frame.

1.8 ASG Signal Source (optional)

 Output single tone/sweep/power scan signals

ASG_SignalOutput.cpp: Output single tone/sweep/power scan signals as needed.

2. Digital Demodulation (optional)

HTRA API Example Usage Guide 29

3. Qt

3.1 Configure Development Environment

1. As shown in the figure, first create a new folder to store the entire project (taking

QtTest as an example, it is recommended not to use a Chinese path), and then

create a htra_api folder within the folder to store the dynamic link libraries and

calibration files.

2. Copy all files from the Windows\HTRA_API\x64\htra_api folder on the USB drive

to the newly created QtTest\htra_api folder (taking the x64 architecture program

as an example; for the x86 architecture program, simply copy the corresponding

architecture's libraries).

HTRA API Example Usage Guide 30

3. Open Qt Creator, click on File, and select New File or Project.

4. Select Create Form Application.

HTRA API Example Usage Guide 31

5. After filling in the project name, click Browse to change the project path.

6. Select the directory as the QtTest address created in the first step and click Open.

7. After selecting the path, click Next.

HTRA API Example Usage Guide 32

8. Select qmake and click Next to continue.

9. Click Next to continue.

HTRA API Example Usage Guide 33

10. Click Next to continue.

11. Select a build environment for the project and click Next to continue.

HTRA API Example Usage Guide 34

12. Click Finish to create the project.

13. Click Edit, right-click the Test project, and click Add Library.

HTRA API Example Usage Guide 35

14. Select External Library and click Next.

15. Click Browse Library File.

HTRA API Example Usage Guide 36

16. Select the htra_api.lib library in QTest\htra_api and click Open.

17. Uncheck all options in Windows, click on Static Library, select the Windows

platform, and click Next.

18. Click Finish to add the external library.

HTRA API Example Usage Guide 37

19. Delete the last line "else: win32-g++: PRE_TARGTDEPS+=$$PWD/..

/htra_api/libhtra_api.a".

HTRA API Example Usage Guide 38

20. Save the Test.pro file, and then you can write the code normally.

21. After writing the code, click Run. The device should function normally as shown

in the figure.

3.2 Qt Example Usage Process

The usage process for the Qt examples included in the USB drive is as follows:

1. As shown in the figure, use Qt Creator to open the htrademo.pro file located in

the Windows\HTRA_API_Example\HTRA_Qt_Examples\htrademo folder on the

USB drive (please ensure the project path does not contain Chinese characters).

HTRA API Example Usage Guide 39

2. Click on the project to configure a build environment for it.

3. After configuring the build environment, click on Edit, and then click on main.cpp

in the Sources folder of the htrademo project.

4. Since each example in the Qt provided examples is encapsulated in a separate

function, you can simply uncomment the desired example when using it (multiple

HTRA API Example Usage Guide 40

examples cannot be used simultaneously). For instance, when testing the

Device_GetDeviceInfo example, uncomment it, save, and click run. The image

shown indicates that the device is operating normally.

3.3 Qt Example Description

The Qt examples on the USB stick include a general example (HTRA_Qt_Example), an

FM and AM demodulation example (HTRA_Demodulation), and an IQ to Spectrum

example (IQS_ToSpectrumBuLiquid) using the Liquid library, refer to the C/C++

examples chapter for specific examples.

HTRA API Example Usage Guide 41

4. Python

4.1 Configure Development Environment

1. Create a folder on the desktop and name it, for example, test. Open the USB drive

and copy the "HTRA_API" folder and "htra_api.py" file from

"\Windows\HTRA_API_Example\HTRA_Python_Examples" on the USB drive to

the newly created folder.

2. Open Visual Studio Code, click on File and then Open Folder, and open the folder

you just created.

HTRA API Example Usage Guide 42

3. Create a new Python file.

4. Write code normally. You can refer to the Python examples included in the USB

drive, specifically in the folder

"\Windows\HTRA_API_Example\HTRA_Python_Examples" for the project.

HTRA API Example Usage Guide 43

4.2 Python Example Usage Process

The usage process of the Python examples included in the USB drive is as follows:

1. As shown in the figure, open the entire project using vscode or another compiler

from the USB drive provided:

Windows\HTRA_API_Example\HTRA_Python_Examples. The htra_api.py file in

the project is the mapping file for the dynamic link library in Python, while the

other files are example programs (the role of the examples will be described in

subsequent chapters).

2. Select any example program, configure the Python environment for it, and run

the program directly. For instance, when using the SWPMode_Standard.py

example, the device is shown to be operating normally as illustrated.

HTRA API Example Usage Guide 44

4.3 Python Example Description

 Get device information

Device_GetDeviceInfo.py: Retrieves various device information, including API version,

USB version, device model, device UID, MCU version, FPGA version, and device

temperature.

 Obtain Standard Spectrum Data

SWP_GetSpectrum_Standard.py: Obtains complete spectrum data within a specified

frequency band(Plotting the spectrum if the host computer includes the matplotlib

library).

 Obtain IQ Data for a Fixed Number of Points or Duration

IQS_GetIQdata_Standard.py: Obtains IQ data under different trigger modes in IQS

mode.

 Obtain Power Detection Data for a Fixed Number of Points or

Duration

DET_GetPowerTrace_Standard.py: Obtains power detection data under different

HTRA API Example Usage Guide 45

trigger modes in DET mode(Plotting the Time-power graph if the host computer

includes the matplotlib library).

 Obtain real-time spectrum data for a fixed number of points or

duration

RTA_GetRealTimeSpectrum_Standard.py: Obtain real-time spectrum data under

different trigger modes in RTA mode.

 IQ to Spectrum Data

DSP_IQSToSpectrum.py: Convert the IQ data obtained in IQS mode into spectrum

data(If the host computer contains the matplotlib library then plot the spectrum and

IQ time-domain graphs).

 GNSS Related

Device_AboutGNSS.py: Obtain information such as longitude, latitude, altitude, and

time acquired by the GNSS module; obtain the longitude, latitude, and time

information from the MeasAuxInfo structure in IQS mode.

HTRA API Example Usage Guide 46

5. Matlab

5.1 Configure Development Environment

The method of calling htra_api in 32-bit is basically the same as in 64-bit, so the

following tutorial uses Matlab 2016a as an example to illustrate how to call the 64-bit

htra_api.

 Install MSYS2

Download and installation link: https://www.msys2.org/

1. Download the installer MSYS2-x86_64-20231026.exe

2. Run the installer. MSYS2 requires 64-bit Windows 8.1 or higher.

3. The default installation path is C:\msys64, but you can choose a different path as

needed.

https://www.msys2.org/

HTRA API Example Usage Guide 47

4. Once completed, click Finish.

5. Now, MSYS2 is ready, and the terminal for the UCRT64 environment has started.

6. To install the GCC tools, enter the command: pacman -S mingw-w64-ucrt-x86_64-

gcc

HTRA API Example Usage Guide 48

7. The terminal window will display the following output. Press "Enter" to continue.

8. Enter the command gcc --version to check the version information of GCC.

 Configure Matlab

1. Solve the case of Matlab 2016a opening .m file with Chinese garbled code.

Note: If you are using a version of Matlab higher than 2019a, ignore this step.

1) View the current coding format:

At the Matlab command line type: feature('locale')

HTRA API Example Usage Guide 49

As you can see from the figure, the encoding format is GBK.

2) Right-click on the Matlab2016a shortcut and select "Open File Location" to open

the folder where Matlab.exe is located.

3) In the folder shown in step (2), find lcdata.xml and lcdata_utf8.xml, rename

lcdata.xml to lcdata_old.xml, i.e., backup the original lcdata.xml.

4) Make a copy of lcdata_utf8.xml and put it in the same level folder, and rename

the newly copied file lcdata_utf8.xml to lcdata.xml.

5) Open lcdata.xml and delete the GBK related code shown below.

6) Find the "UTF-8" part, add the code in the marked line to the corresponding

position in the figure, save lcdata.xml and close the file.

7) After restarting Matlab, the garbled Chinese is back to normal.

HTRA API Example Usage Guide 50

2. Configuration of the compilation environment Method 1: Configuration in scripts:

At script runtime, run setenv('MW_MINGW64_LOC', ' D:\msys64\ucrt64') and the mex

-setup C++ command to configure the compilation environment for C++.

Note: D:\msys64\ucrt64 is the folder where the compilation environment is located.

Please check if there are files such as c++.exe, g++.exe, and gcc.exe in the bin folder at

this address. If they exist, this address is the compilation environment address; if not,

please find the correct address of the compilation environment.

3. Configuration of the compilation environment method II: startup.m file modified.

1) In the Matlab terminal, input: userpath, and the command line window will

output a result similar to: C:\Users\YourUsername\Documents\MATLAB

2) Check if the startup.m file exists at C:\Users\YourUsername\Documents\MATLAB.

If it does not exist, create a new startup.m file at this location. The steps for

creation are as follows:

i. Matlab terminal input: cd('C:\Users\YourUsername\Documents\MATLAB'),

HTRA API Example Usage Guide 51

switch the working directory to C:\Users\YourUsername\Documents\MATLAB.

ii. Matlab terminal input: edit startup.m, select "Yes" in the pop-up window to

create the startup.m file.

iii. Add commands in the startup.m file:

setenv('MW_MINGW64_LOC', 'D:\msys64\ucrt64'); and mex -setup C++.

iv. After editing the startup.m file, save and close it.

HTRA API Example Usage Guide 52

v. Restart Matlab, and observe that the command line window appears as shown

in the figure below, indicating that the configuration is complete.

 Description of call htra_api.dll

1. loadlibrary

The loadlibrary function can load dynamic link libraries.

loadlibrary('.\htra_api\htra_api.dll','.\htra_api\htra_api.h'); Ensure that the file paths

for .dll and .h are correct.

2. libfunctions

libfunctions('htra_api'); This is used to view all available functions in htra_api.dll.

3. libpointer

libpointer allows the creation of data type pointers in Matlab and passes them to

external library functions.

HTRA API Example Usage Guide 53

4. libstruct

libstruct is used to define structure types in Matlab and pass them to external library

functions.

5. get

The get function is used to retrieve the property values of a structure.

6. calllib

calllib is the command in Matlab used to call functions in htra_api.dll.

7. load

load is used to load the .mat structure files generated in htra_api.m.

8. fullfile

fullfile is a function in MATLAB used to generate full file paths. Load the

BootProfile.mat and BootInfo.mat files under the filePath.

9. unloadlibrary

unloadlibrary is used to unload a previously loaded htra_api library, appearing in pairs

HTRA API Example Usage Guide 54

with loadlibrary.

5.2 Matlab example usage process

The usage process for the Matlab examples included on the USB drive is as follows:

1. Open the Windows\HTRA_API_Example\HTRA_Matlab_Examples folder on the

USB drive, and double-click any .m file to open the example. For instructions on

how to run the example, please refer directly to step 4.

2. If you cannot open the example in step 1, please continue to this step and copy

the address Windows\HTRA_API_Example\HTRA_Matlab_Examples.

3. Open the Matlab software installed on your system.

4. After pasting the copied address into the file address box, press Enter to navigate

HTRA API Example Usage Guide 55

to the \Windows\HTRA_API_Example\HTRA_Matlab_Examples folder included

with the materials.

5. Click on the .m file on the left as needed, click "Run", and wait for the Figure 1

window to appear, indicating that the example has run successfully. For the

functional descriptions of each example, please refer to section 5.2 Matlab

Example Description.

5.3 Introduction to Accompanying Examples

 Get device information

Device_QueryDeviceInfo.m: Retrieve device information, including API version, USB

version, device model, device UID, MCU version, FPGA version, and device

temperature.

HTRA API Example Usage Guide 56

 Obtain Standard Spectrum Data

SWPMode_Standard.m: Obtain complete spectrum data within the specified

frequency band.

 Create multiple markers to display the frequency and power of the

markers.

CreatPeakMarker.m: Obtain spectrum data within the specified frequency band,

create markers, and perform peak searching.

 Collect the peak spectrum every five minutes.

SWPMode_per5minute_findMax.m: Obtain spectrum data within the specified

frequency band and search for the peak globally every five minutes.

 Obtain continuous stream or fixed number of IQ data.

IQSMode_Standard.m: Acquire IQ data under different trigger modes in IQS mode.

 The acquired IQ data is converted into spectrum data.

DSP_IQSToSpectrum.m: After acquiring IQ data, the obtained IQ data is converted into

spectrum data.

 Acquire continuous stream or fixed number of power detection

data.

DET_GetPowerTrace_FixedPoints.m: Acquire power detection data under different

triggering modes in DET mode.

HTRA API Example Usage Guide 57

 Acquire continuous stream or fixed duration real-time spectrum

data.

RTAMode_FixedPoints.m: Acquire real-time spectrum data under different triggering

modes in RTA mode.

 Internal signal source output signal.

ASG_CWOutput.m: Output single-tone signals, frequency sweep signals, and power

sweep signals. Applicable only to devices with signal source options.

 Lock GNSS antenna and DOCXO oscillator.

GNSS_DOCXO_LockState.m: Call the API interface to lock the GNSS antenna and

DOCXO oscillator, applicable only to devices with IO expansion board options.

 Multi-machine synchronization

IQSMode_MultiDevSync_Standard.m: When using the same reference clock source

input and the same trigger source input, two devices simultaneously acquire IQ data,

allowing for the observation of the synchronization of their collected data.

HTRA API Example Usage Guide 58

6. C#

6.1 Configure Development Environment

 Development Environment Confirmation

Open Visual Studio Installer, check the .NET desktop development components and

Universal Windows Platform development components, and click Modify to ensure

that Visual Studio 2019 has the C# development environment.

 Project Setup

1. Open Visual Studio 2019 and click on Create a New Project.

HTRA API Example Usage Guide 59

2. Select C# Console Application and click Next.

3. Enter the project name and storage location, uncheck the option to place the

solution and project in the same directory. Select .NET Framework 4.5 as the

framework, and finally click Create.

4. Once the creation is complete, open the project, right-click on the solution, and

select Add New Project.

HTRA API Example Usage Guide 60

5. Select Class Library (.NET Framework) under Library type for the project type, and

click Next.

6. The library name can be modified as needed, such as HtraApi, and the location

should not be changed, remaining at the same directory level as the solution. The

result is shown in the figure, select the .NET Framework 4.5 framework, and click

Create.

HTRA API Example Usage Guide 61

7. Right-click on ConsoleApp1 and select Properties.

8. View the project's build properties, change the target platform to x86, click Debug,

enter htra_api\ in the working directory, and save. If the situation in Figure 12

occurs, click OK and save again.

HTRA API Example Usage Guide 62

9. Right-click on the library HtraApi and select Properties.

HTRA API Example Usage Guide 63

10. View the library's build properties, change the target platform to x86, and save.

11. Copy the contents of the HtraApi.cs file from the folder

\Windows\HTRA_API_Example\HTRA_C#_Examples included in the

accompanying materials to the Class1.cs file in the project library and save.

HTRA API Example Usage Guide 64

12. Select the ConsoleApp1 project, right-click on References, and choose Add

Reference.

13. Select the HtraApi library and confirm the addition of the library reference.

HTRA API Example Usage Guide 65

14. Copy the htra_api folder from \Windows\HTRA_API\x86 on the accompanying

USB drive to the Debug folder under the project's bin folder, and ensure that the

CalFile folder within the htra_api folder contains the calibration files.

15. Write code normally. You can refer to the C# examples included in the

accompanying USB drive, specifically the projects in

\Windows\HTRA_API_Example\HTRA_C#_Examples.

HTRA API Example Usage Guide 66

HTRA API Example Usage Guide 67

6.2 C# Example Usage Process

The usage process of the C# examples included in the USB drive is as follows:

1. Open the USB drive using Visual Studio and navigate to the folder

Windows\HTRA_API_Example\HTRA_CSharp_Examples, then open the solution

file HTRA_CSharp_Examples.sln.

2. Click on the HTRA_CSharp_Examples project on the right side, and then click on

the Programe.cs file.

3. Since each example in the C# included examples is encapsulated in a separate

class, you can run the examples by uncommenting them (multiple examples

cannot be used simultaneously). For instance, when testing the

Device_GetDeviceInfo example, uncomment it and click run; as shown in the

figure, the device is running normally.

HTRA API Example Usage Guide 68

HTRA API Example Usage Guide 69

6.3 C# Example Descriptions

 Get device information

Device_GetDeviceInfo.cs: Retrieves device information including API version, USB

version, device model, device UID, MCU version, FPGA version, and device

temperature.

 Obtain Standard Spectrum Data

SWP_GetSpectrum_Standard.cs: Obtains complete spectrum data within a specified

frequency band.

 Obtain IQ Data for a Fixed Number of Points or Duration

IQS_GetIQdata_Standard.cs: Acquires IQ data under different trigger modes in IQS

mode.

 Obtain Power Detection Data for a Fixed Number of Points or

Duration

DET_GetPowerTrace_Standard.cs: Obtains power detection data under different

trigger modes in DET mode.

 Obtain real-time spectrum data for a fixed number of points or

duration

RTA_GetRealTimeSpectrum_Standard.cs: Retrieves real-time spectrum data under

different trigger modes in RTA mode.

 Output single-tone signal

ASG_CWOutput.cs: Devices with signal source functionality options output single-tone

HTRA API Example Usage Guide 70

signals, frequency sweep signals, or power sweep signals through ASG functionality.

 AM/FM Demodulation

Demodulation.cs: DSP_FMDemod performs FM demodulation and playback of the

acquired IQ data. DSP_AMDemod performs AM demodulation and playback of the

acquired IQ data.

 IQ to Spectrum Data

DSP_IQSToSpectrum.cs: Converts the IQ data obtained in IQS mode into spectrum data.

 Low-pass filtering

DSP_LPF.cs: Applies low-pass filtering to the acquired IQ data and converts it to

spectrum.

 Digital Downconversion

DSP_DDC.cs: Performs digital down-conversion on the acquired IQ data and converts

it to spectrum.

 Phase noise test

DSP_TraceAnalysis_PhaseNoise.cs: Demonstration of Phase Noise Test Function.

HTRA API Example Usage Guide 71

7. Java (to be supplemented)

HTRA API Example Usage Guide 72

8. Labview

8.1 Configure Development Environment

 Export library functions from htra_api.dll using LabVIEW

1. Create a folder (e.g., HTRA_Labview) and copy the htra_api folder from the USB

drive located at Windows\HTRA_API\x86 into this folder. Then create another

folder (e.g., VIS) to place the exported vi.

2. LabVIEW does not recognize the uint64_t and int64_t data types during import,

so before importing, all parameters of type uint64_t and int64_t need to be

changed to double. Note that after exporting the functions, these modified

parameter types should be changed back to uint64_t or int64_t in the VIs.

3. Change the encoding format of htra_api.h to UTF-8.

HTRA API Example Usage Guide 73

4. Open LabVIEW, and select "Tools--->Import--->Shared Library."

5. Select "Create VIs for a shared library" and click "Next."

6. In "Shared Library (.dll) File" and "Header (.h) File", select the corresponding

library files in the previously created folder. After selecting the shared library file

path, the header file path can be automatically recognized and does not need to

be selected again. Then click "Next".

HTRA API Example Usage Guide 74

7. Configure the paths of other dependent files in "Include", which are generally

located in the Visual Studio installation folder, as shown in the path in the figure

below. Then click "Next" and wait for the resolution.

8. Select the functions that need to be exported. Some functions are deprecated or

HTRA API Example Usage Guide 75

not yet open. You can refer to htra_api.h for selection. After selecting, click "Next".

9. Select the "VIS" folder in the path where the library and header files are stored

for "Project Library Path", then click "Next".

HTRA API Example Usage Guide 76

10. It is recommended to select "Simple Error Handling" for "Error Handling Mode",

then click "Next".

11. Set the calling library node of each function to "Run in Any Thread". After all

settings are completed, click "Next" and wait for the VI to be generated.

HTRA API Example Usage Guide 77

12. Check "Open the generated library". "View the report" is optional. Click "Finish".

13. The VIs in the "VIS" folder are the exported API functions. This concludes the

process of exporting the API functions.

HTRA API Example Usage Guide 78

HTRA API Example Usage Guide 79

 Using the API in the LabVIEW environment

1. Open LabVIEW and click "Create Project."

2. Select "Blank Project" and click "Finish."

3. An unnamed empty project will then appear. Save the project with "Ctrl+S", select

the project save path and name the project, then click "OK".

HTRA API Example Usage Guide 80

4. Copy the "htra_api" folder from the "\Windows\HTRA_API\x86" directory on the

USB flash drive to the same directory level as this project. Additionally, you can

create an "Examples" folder to store examples. If needed, you can also create

another folder, such as "Subvi", to store sub-VIs.

5. Copy the previously exported library functions, i.e., the contents of the "VIS"

folder created in section 8.1.1, to the "htra_api" folder.

HTRA API Example Usage Guide 81

6. In the LabVIEW project, add the newly created Examples folder and the htra_api

folder to the project, and then save.

7. Create a new VI in the "Examples" folder. You can then call the exported LabVIEW

API functions within the block diagram. The calling process is consistent with that

in the C environment.

HTRA API Example Usage Guide 82

8. Finally, save this program to the Examples folder and rename it.

HTRA API Example Usage Guide 83

 Use the newly exported library functions in an existing project.

The following uses the library function DSP_InterceptSpectrum() as an example to

illustrate how to use newly imported functions within an existing project.

1. For the method of exporting library functions, please refer to section 8.1.1. Note

that in the popped-up htra_api.lvlib, you should delete the exported functions

and DLL files from the project, and then close htra_api.lvlib, as shown in the figure

below.

2. Copy the exported DSP_InterceptSpectrum function VI to the htra_api\VIs folder

of the existing project.

HTRA API Example Usage Guide 84

3. Open the project with LabVIEW, then open the htra_api\VIs folder and

htra_api.lvlib within the project.

4. Drag the DSP_InterceptSpectrum function VI from the VIs folder into

htra_api.lvlib. At this point, you can use the newly added VI function normally.

HTRA API Example Usage Guide 85

HTRA API Example Usage Guide 86

 Generate an exe from the vi in Labview

The following uses the LabVIEW project located in the \Windows\HTRA_API_Example

folder on the USB flash drive as an example to illustrate how to build a program VI into

an executable (.exe) file.

1. Open the LabVIEW project, then select "Build Specifications --> New -->

Application (EXE)".

2. Fill in the standard name of the program file generated, the name of the exe, and

the target directory path in "Information".

HTRA API Example Usage Guide 87

3. Select the vi programs, CalFile folder, and all dependent library files to be

exported as exe in "Source Files".

4. Add a layer of htra_api to the target path of "Support Directory" in "Destinations"

to store the libraries and calibration folder.

HTRA API Example Usage Guide 88

5. Add a CalFile folder to store the device's calibration files, and add the target path

of CalFile to the directory under "Support Directory".

6. In "Source Files Settings", select the target path of the calibration files to "CalFile".

HTRA API Example Usage Guide 89

7. Select the target paths of all dependent libraries to the "Support Directory".

8. Click "Build".

HTRA API Example Usage Guide 90

9. At this point, the generation of the exe program from the vi program in Labview

is complete.

8.2 The usage process of Labview examples

The usage process of Labview examples included in the USB drive is as follows:

1. Open the accompanying USB drive using LabVIEW in the folder

Windows\HTRA_API_Example\HTRA_Labview_Examples, and open the project

HTRA_Labview_Examples.lvproj.

HTRA API Example Usage Guide 91

2. After opening the project, double-click to open any routine vi in the Example

folder. For example, here we open SWP_GetSpectrum_Standard.vi to use the

SWP mode routine.

3. Once the program is opened, simply click the run button in the upper left corner,

as shown in the image where the program is running normally.

HTRA API Example Usage Guide 92

HTRA API Example Usage Guide 93

8.3 Labview Example Description

 Get device information

Device_GetDeviceInfo.vi: An example for obtaining various device information,

including: API version, device model, device UID, MCU version, FPGA version, and

device temperature.

 Standard spectrum acquisition

SWP_GetSpectrum_Standard.vi: Obtains standard spectrum data within a specified

frequency band and displays the image.

 Obtain IQ Data for a Fixed Number of Points or Duration

IQS_GetIQ_FixedPoints.vi: Obtains IQ data with a fixed number of points. When the

device receives a Bus trigger signal, it returns IQ data with a fixed number of points.

 Streaming and reading IQ data

IQS_RecordAndPlayback.vi: Obtains IQ data, records the IQ data as a txt file, and plays

back the recorded IQ data.

 IQ to Spectrum Data

DSP_IQSToSpectrum.vi: Obtains IQ data and converts the acquired IQ data into

spectrum data.

 Digital Downconversion

DSP_DDC.vi: Performs digital downconversion on the IQ data stream and resamples to

generate a sub-IQ stream for further spectrum analysis.

HTRA API Example Usage Guide 94

 Audio Analysis

DSP_AudioAnalysis.vi: Analyzes audio voltage (V), audio frequency (Hz), signal-to-

noise ratio (dB), and total harmonic distortion (%).

 Obtain Power Detection Data for a Fixed Number of Points or

Duration

DET_GetPowerTrace.vi: Obtain a fixed number of DET data points. When the device

receives a Bus trigger signal, it returns a fixed number of DET data points.

 Obtain real-time spectrum data for a fixed number of points or

duration

RTA_GetRealTimeSpectrum.vi: Obtain a fixed number of RTA data points. When the

device receives a Bus trigger signal, it returns a fixed number of RTA data points.

 ASG Signal Source Output Signal

ASG_CWOutput.vi: Control the internal signal generator of the device to output single-

tone signals, sweep signals, and power scan signals.

HTRA API Example Usage Guide 95

9. Linux

9.1 Environment Version Compatibility Self-Check

When using the device in a Linux system, you first need to confirm whether the current

Linux environment's system architecture, gcc version, and GLIBC version are supported

according to the following process:

1. Open the terminal and enter "uname -a" to check the Linux system architecture,

for example, here the Linux system architecture is x86_64.

2. In the terminal, enter "gcc -v" to check the system gcc version, for example, here

the gcc version is 7.5.0.

3. In the terminal, enter "ldd --version" to check the system GLIBC version, for

example, here the GLIBC version is 2.27.

4. Confirm whether the current environment is supported according to the terminal

information comparison table. If it is not yet supported, please contact technical

support personnel.

X86 processor Support Intel and AMD processors

ARM processor aarch64 (armv8), armv7 processors, such as: Raspberry Pi 4b, RK3399,

RK3568, RK3588, T507, NVIDIA Jetson TX2

Compilation gcc4.8, glib2.17 and above

HTRA API Example Usage Guide 96

environment

Distribution Customized system for Raspberry Pi 4b, Ubuntu 18.04, etc.

HTRA API Example Usage Guide 97

9.2 Accompanying documentation

Currently, the Linux section of the accompanying USB drive contains the following

materials:

 HTRA_C++_Examples

The HTRA_C++_Examples folder contains:

1. Examples folder: C++ example programs (see Chapter9.4 for usage).

2. Makefile: A build script used to compile the example programs into executable

files.

3. bin folder: Used to store device calibration files and executable files generated

from the example programs.

 HTRA_Qt_Examples

The HTRA_Qt_Examples folder contains:

1. htrademo folder: Qt examples and pro files (see Chapter9.5 for usage).

2. bin folder: Used to store device calibration files and executable files compiled

from the example programs.

3. htraapi folder: Used to store dynamic link libraries.

HTRA API Example Usage Guide 98

 HTRA_Python_Examples

HTRA_Python_Examples folder specifically contains:

1. Python example programs (see Chapter9.6 for usage).

2. CalFile folder: stores device calibration files.

3. Htraapi folder: used to store dynamic link libraries.

 HTRA_Gnuradio

The HTRA_Gnuradio folder contains two adaptation for GNU Radio:

1. The HTRA OOT method.

2. The SoapySDR adaptation method.

HTRA API Example Usage Guide 99

 Install_HTRA_SDK

Install_HTRA_SDK folder contains:

1. install_htraapi_lib.sh: driver configuration script.

2. Install_HTRA_SDK\htraapi\configs folder: driver configuration files.

3. Install_HTRA_SDK\htraapi\inc folder: header files.

4. Install_HTRA_SDK\htraapi\lib\arrch64 folder: arrch64 architecture dynamic link

libraries.

5. Install_HTRA_SDK\htraapi\lib\arrch64_gcc7.5 folder: Dynamic link library for

arrch64 architecture with more efficient FFT (requires system gcc version higher

than 7.5).

6. Install_HTRA_SDK\htraapi\lib\x86_64 folder: Dynamic link library for x86_64

architecture.

7. Install_HTRA_SDK\htraapi\lib\x86_64_gcc5.4 folder: Dynamic link library for

x86_64 architecture with more efficient FFT (requires system gcc version higher

than 5.4).

8. Install_HTRA_SDK\htraapi\lib\armv7 folder: Dynamic link library for armv7

architecture.

HTRA API Example Usage Guide 100

HTRA API Example Usage Guide 101

9.3 Driver file configuration

To use the device in Linux, the driver file must be configured first. The specific process

is as follows:

1. Driver file configuration: First, drag the Install_HTRA_SDK folder into the Linux

host computer, then open a terminal in the Install_HTRA_SDK folder and enter

"sudo sh install_htraapi_lib.sh" to configure the driver file. If the special

development board does not have the sudo command, simply enter "sh

install_htraapi_lib.sh".

2. Configuration check: Ensure the device is correctly connected to the host

computer (if the host computer is a virtual machine, ensure the device is

connected to the virtual machine and that USB compatibility is 3.1) and provide

normal power to the device. At this point, as shown in the figure, enter "lsusb" in

the terminal to view the list of USB devices on the machine, where "ID: 6430 (or

ID: 3675 or ID: 04b5)" indicates successful device connection.

HTRA API Example Usage Guide 102

9.4 C++ example usage and project creation

 C++ example usage

Under the premise that the device is properly connected and the driver files have been

correctly configured as per Chapter9.3, if you wish to use the C++ examples included

on the USB drive, you can refer to the following process (the specific functions of the

examples can be directly viewed in the description in Chapter 1):

1. Select the program to compile: First, copy the Linux\ HTRA_C++_Examples folder

from the USB drive to the host computer. Double-click to open main.cpp in the

Examples folder, and uncomment the example you need to test (the following

steps will take the SWP_GetSpectrum_Standard example as an example), as

shown in the figure to uncomment.

2. Refer to the system architecture in Chapter9.1, and based on the selected test

example, open the terminal in the HTRA_C++_Examples folder, following the host

computer's system architecture.

HTRA API Example Usage Guide 103

1) For x86_86 system, input:

(the example routine here is SWP_GetSpectrum_Standard)

make Example=SWP_GetSpectrum_Standard

2) For aarch64 system, input:

make TARG=aarch64 Example=SWP_GetSpectrum_Standard

3) For armv7 system, input:

make TARG=armv7 Example=SWP_GetSpectrum_Standard

3. Verify the calibration file: Open the HTRA_C++_Examples\bin\CalFile folder, and

ensure that the folder contains the device calibration files, as shown in the figure.

4. Run the program: After the program compiles successfully and the calibration is

confirmed to be correct, open the terminal and input:

./bin/SWP_GetSpectrum_Standard

The example shown in the figure is a normal operation example.

 C++ Project Creation and Compilation

Assuming that the driver files have been correctly configured as per Chapter9.3, if you

HTRA API Example Usage Guide 104

want to create a C++ project for compilation, please refer to the following process:

Write Code: Since the Linux dynamic link library provided with the USB drive is

identical to that in Windows, the code only needs to comply with the API programming

guidelines.

Compile and Run:

1. As shown in the figure, first create a new folder to store the entire project (taking

C++_Test as an example), then create a CalFile folder within the folder to store

calibration files, and create an htraapi folder to store header files and dynamic

link libraries.

2. Create an inc folder under the htraapi folder to store header files, and a lib folder

to store dynamic link libraries.

3. Copy the files from the CalFile folder on the provided USB drive to the newly

created C++_Test\CalFile folder.

HTRA API Example Usage Guide 105

4. Copy the header files from the Linux\Install_HTRA_SDK\htraapi\inc folder on the

provided USB drive to the newly created C++_Test\htraapi\inc folder.

5. Refer to the system architecture in Chapter9.1, and then according to the

instructions in Chapter9.2.4, copy the dynamic link libraries corresponding to the

architecture from the Linux\Install_HTRA_SDK\htraapi\lib folder to the newly

created C++_Test\htraapi\lib folder (taking the x86_64 architecture host

computer as an example).

HTRA API Example Usage Guide 106

6. Open the terminal in the lib folder location and enter the following commands to

create soft links for the copied dynamic link libraries (the commands for the

dynamic link libraries of the three architectures are the same):

⚫ ln -sf libhtraapi.so.0.55.5 libhtraapi.so.0

(Here, the libhtraapi.so library is taken as an example with version 0.55.55; modify the

version number for other versions.)

⚫ ln -sf libhtraapi.so.0 libhtraapi.so

⚫ ln -sf libusb-1.0.so.0.2.0 libusb-1.0.so.0

⚫ ln -sf libusb-1.0.so.0 libusb-1.0.so

⚫ ln -sf libgomp.so.1.0.0 libgomp.so.1

⚫ ln -sf libgomp.so.1 libgomp.so

7. Store the written code files in the outermost folder of C++_Test.

HTRA API Example Usage Guide 107

8. Compile to generate the executable file: First, check the system architecture

according to the process in Chapter 9.1, then open the terminal in the C++_Test

folder (the image below takes the x86_64 system as an example), and input

according to the host system architecture.

1) For x86_64 system input (example test.cpp here):

g++ -o Test Test.cpp -std=c++11 -I ./htraapi/inc -L ./htraapi/lib -lhtraapi -Wl,-

rpath='./htraapi/lib'

2) Input for arrch64 system:

aarch64-linux-gnu-g++-o Test Test.cpp -std=c++11 -I ./htraapi/inc -L ./htraapi/lib -

lhtraapi -Wl,-rpath='./htraapi/lib'

3) For armv7 system, input:

arm-linux-gnueabihf-g++-o Test Test.cpp -std=c++11 -I ./htraapi/inc -L ./htraapi/lib -

lhtraapi -Wl,-rpath='./htraapi/lib'

9. Run the program: Enter ./Test to start the executable file.

HTRA API Example Usage Guide 108

 C++ Project Cross-Compilation

Under the premise that the host computer has a cross-compilation toolchain, if you

want to cross-compile to use the device, please refer to the following process (taking

the cross-compilation of an aarch64 executable program on an x86_64 host computer

as an example):

1. First, generate the executable file for the target architecture:

1) Create a project and place the calibration files and header files according to steps

1 to 4 in the compilation and running method in Chapter 9.4.2.

2) Place the cross-compiled target architecture library files as per step 5. For

example, when cross-compiling an executable for the arrch64 architecture,

please place the library files for the arrch64 architecture.

3) Perform soft linking and program writing storage according to steps 6 to 7.

4) Compile the executable file using the target architecture compilation command

as described in step 8. The compilation command for the aarch64 architecture is

expected to be used when compiling the executable file for the aarch64 system,

as shown in the figure below.

HTRA API Example Usage Guide 109

5) After generating the executable file, input 'file Test' to check the architecture of

the executable program, and you will see that the current executable program

architecture is aarch64.

2. At this point, the executable program has been successfully generated, and you

can now run the program on the aarch64 host machine using the device:

1) Navigate to the project directory (the example project is located on the desktop,

so input 'cd Desktop/'), and compress the entire folder into a zip file, for example,

input 'zip -r C++_Test.zip C++_Test' to create the zip archive.

2) Copy the zip file to the aarch64 host machine.

HTRA API Example Usage Guide 110

3) Navigate to the location where the zip file is stored (in this example, the zip file is

on the desktop, so input 'cd Desktop/'), and extract the project (input 'unzip

C++_Test').

4) Configure the driver files on the aarch64 host machine as per the steps in

Chapter9.3.

5) After configuring the driver files, input 'cd C++_Test/' to enter the folder, and then

simply input './Test' to run the program.

HTRA API Example Usage Guide 111

9.5 Using Qt Examples and Project Creation

 Using Qt Examples

To use the Qt examples included on the USB drive, provided that the device is properly

connected and the driver files have been configured correctly as per Chapter9.3,

please refer to the following process (the purpose of this Qt example is to obtain

complete spectrum data within a specified frequency band):

1. Copy the Linux\HTRA_Qt_Examples folder from the included USB drive to the

host computer, and then navigate to the HTRA_Qt_Examples\htraapi subfolder

as shown in the figure.

2. Refer to the system architecture in the process outlined in Chapter 9.1, and then

follow the instructions in Chapter 9.2.4 to copy the dynamic link libraries

corresponding to the system architecture from the

Linux\Install_HTRA_SDK\htraapi\lib folder on the USB drive to the

HTRA_Qt_Examples\htraapi folder (this example uses an x86_64 architecture

host computer).

HTRA API Example Usage Guide 112

3. Open a terminal in the current folder, enter "sudo sh Qt_Make.sh", and then

follow the prompts to enter the sudo password to grant permission for creating

soft links to the libraries.

4. After running the script, use Qt Creator to open the htrademo.pro file in the

htrademo folder.

5. First, select the build environment for the project.

HTRA API Example Usage Guide 113

6. Open the HTRA_Qt_Examples\bin\CalFile folder and ensure that there is a device

calibration file in the folder.

7. After confirming that there is a calibration file, select any example in main.cpp.

8. Click Run, and as shown in the figure, the device is functioning normally.

HTRA API Example Usage Guide 114

HTRA API Example Usage Guide 115

 Qt Project Creation and Compilation

Under the premise that the driver files have been correctly configured according to

Chapter 9.3, if you want to create a Qt project for compilation, please refer to the

following process:

First, when writing code, since the Linux dynamic link libraries provided with the USB

drive are identical to those for Windows, the code only needs to comply with the API

programming guidelines.

Next, the process for creating the project is as follows:

1. As shown in the figure, first create a new folder to store the entire project (taking

QtTest as an example), then create a bin folder within this folder to store

calibration files and the generated executable files, and create an htraapi folder

to store header files and dynamic link libraries.

2. Create a CalFile folder under the bin folder to store the device calibration files.

3. Copy the files from the CalFile folder on the provided USB drive to the newly

created QtTest\bin\CalFile folder.

HTRA API Example Usage Guide 116

4. Copy the header files from the Linux\Install_HTRA_SDK\htraapi\inc folder on the

provided USB drive to the newly created QtTest\htraapi folder.

5. Refer to the system architecture in Chapter 9.1, and then according to Chapter

9.2.4, copy the dynamic link libraries corresponding to the system architecture

from the Linux\Install_HTRA_SDK\htraapi\lib folder on the provided USB drive to

the newly created QtTest\htraapi folder (taking the x86_64 architecture for the

host computer as an example).

HTRA API Example Usage Guide 117

6. Open a terminal at the location of the htraapi folder and enter the following

command to create a soft link for the copied dynamic link libraries (the soft link

command for different architectures is the same):

⚫ ln -sf libhtraapi.so.0.55.5 libhtraapi.so.0

(Here, the libhtraapi.so library is taken as an example with version 0.55.55;

modify the version number for other versions.)

⚫ ln -sf libhtraapi.so.0 libhtraapi.so

⚫ ln -sf libusb-1.0.so.0.2.0 libusb-1.0.so.0

⚫ ln -sf libusb-1.0.so.0 libusb-1.0.so

⚫ ln -sf libgomp.so.1.0.0 libgomp.so.1

⚫ ln -sf libgomp.so.1 libgomp.so

7. Open Qt Creator, click on File, and select New File or Project.

HTRA API Example Usage Guide 118

8. Select Create Qt Widgets Application.

9. After filling in the project name, click Browse to change the project path.

HTRA API Example Usage Guide 119

10. Select the directory as the QtTest address created in the first step and click Open.

11. After selecting the path, click Next.

HTRA API Example Usage Guide 120

12. Click Next to continue.

13. Click Next to continue.

14. Click Next to continue.

HTRA API Example Usage Guide 121

15. Select the x86_64 build environment for the project and then continue by clicking

next.

16. Click Finish to create the project.

HTRA API Example Usage Guide 122

17. Click Edit, right-click the Test project, and click Add Library.

18. Select External Library and click Next.

HTRA API Example Usage Guide 123

19. Click Browse Library File.

20. Select Q Test\htraapi, the library previously copied and soft-linked, and click Open.

21. Select the Linux platform and click Next.

HTRA API Example Usage Guide 124

22. Click Finish to add the external library.

23. As shown below, add DESTDIR = $$clean_path($$PWD/...) after CONFIG += c++11.

/bin) (this step specifies where the executable is generated)

HTRA API Example Usage Guide 125

24. As shown in the figure below, after the library file, add

-Wl,-rpath,$$PWD/... /htraapi

(this step specifies the library path for the executable).

25. Save the Test.pro file and write the code in mainwindow.cpp afterwards.

HTRA API Example Usage Guide 126

26. After writing the code correctly, click run. As shown in the figure, you can see that

the program is running normally in the application output.

27. Close Qt Creator, enter the QtTest\bin folder, open the terminal, and type ./Test

to run the executable program.

HTRA API Example Usage Guide 127

 Cross-compiling Qt projects

Under the premise that the host computer has a cross-compilation toolchain, if you

want to cross-compile to use the device, please refer to the following process (taking

the cross-compilation of an aarch64 executable program on an x86_64 host computer

as an example):

1. First, generate the executable file for the target architecture:

1) Create the project and place the calibration files and header files according to

steps 1 to 4 of the QtProject Creation and Compilation.

2) Place the cross-compilation target architecture library files according to step 5 of

the form program creation process. For example, if you expect to cross-compile

an executable for the arrch64 architecture, please place the library files for the

arrch64 architecture.

3) Create a soft link for the dynamic link library according to step 6 of the form

program creation process.

HTRA API Example Usage Guide 128

4) Create the program according to steps 7-13 of the form program creation

process, and in step 14, select the build kit for the cross-compilation target

architecture (for example, in this example, select the build kit for the arrch64

architecture).

5) Follow steps 16-26 of the form program creation process to create the project,

reference the libraries, modify the location for generating the executable

program, and write the project.

6) Click the build button in the lower left corner to build the executable program.

HTRA API Example Usage Guide 129

7) After building the executable program, open the terminal in the QtTest\bin

folder and type file Test to check the architecture of the executable program (the

name of the executable program here is Test, so type file Test).

2. At this point, the executable program has been successfully generated, and you

can now run the program on the aarch64 host machine using the device:

1) Navigate to the project location (in this example, the project is located on the

desktop, so type cd Desktop/), and compress the entire folder into a zip file, for

example, type zip -r Qt Test.zip Qt Test to create a zip archive.

HTRA API Example Usage Guide 130

2) Copy the zip file to the aarch64 host machine.

3) Navigate to the location of the compressed package (in this example, the

compressed package is located on the desktop, so input cd Desktop/), and unzip

the project (input unzip QtTest here).

4) Configure the driver files on the aarch64 host machine as per the steps in

Chapter9.3.

5) After configuring the driver files, input cd QtTest/ to enter the folder, then input

chmod 777 Test to provide execution permissions for the program, and finally

input ./Test to run the program.

HTRA API Example Usage Guide 131

HTRA API Example Usage Guide 132

9.6 Usage of Python examples and project creation

 Usage of Python examples

Assuming the device is properly connected and the driver files have been configured

correctly as per Chapter 9.3, if you want to use the Python examples included on the

USB drive, you can refer to the following process (the specific functions of the Python

examples can be directly viewed in Chapter 4.2):

1. Copy the Linux\ HTRA_ Python_ Examples folder from the included USB drive to

the host computer, then open a terminal in the HTRA_ Python_ Examples folder

and input which python3 to check the location of the Python interpreter (for

example, it may be located at /usr/bin).

2. Based on the interpreter address obtained earlier, input sudo cp -r CalFile /usr/bin

to copy the device calibration file to the same directory as the interpreter

(Python3) (for example, in this case, the same directory is /usr/bin; if the actual

interpreter location is different, modify the address accordingly).

3. First, refer to the system architecture in Chapter9.1, then according to

Chapter9.2.4, copy the dynamic link libraries from the corresponding system

architecture folder under the included USB drive

Linux\Install_HTRA_SDK\htraapi\lib to the HTRA_Python_Examples\htraapi

folder (this example uses the x86_64 architecture host computer).

HTRA API Example Usage Guide 133

4. Open a terminal in the current folder and input "sudo sh Py_Make.sh", then

follow the prompts to enter the sudo password to provide permissions for

creating soft links to the libraries.

5. In the HTRA_ Python_ Examples location, open a terminal and input python3

SWPMode_Standard.py to run the example. (This example uses

SWPMode_Standard.py as an example)

HTRA API Example Usage Guide 134

 Python Project Creation

Under the premise that the driver files have been correctly configured according to

Chapter9.3, if you want to create and write a Python project, please refer to the

following process:

First, when writing code, since the Linux dynamic link library provided with the USB

drive is identical to that in Windows, the code only needs to comply with the API

programming guidelines.

Secondly, when running the program, simply place the program in the example folder

and follow the process outlined in Python Example Usage.

HTRA API Example Usage Guide 135

9.7 GNU Radio Module Construction and Use

After the device is properly connected and the driver files are configured as described

in Section 9.3, you can use the device with GNU Radio in either of the following two

ways.

 Architecture and Operating System Requirements

◼ Architecture: x86_64

◼ Operating System: Ubuntu22.04 or later

◼ GNU Radio Version: 3.9 or later

Enter uname -a in the terminal to check whether your operating system and

architecture meet the requirements for running the HAROGIC spectrum analyzer in

GNU Radio. If they do not, please update to the required versions.

 Installing and Configuration GNU Radio

1. In the terminal, enter sudo apt update && sudo apt-get install gnuradio and wait

for the installation to complete;

2. In the terminal, enter gnuradio-config-info --version to check the installed

version and ensure that GNU Radio was installed successfully;

HTRA API Example Usage Guide 136

 Building the HRTA OOT Module

1. Open the terminal and enter: sudo apt update && sudo apt install -y git cmake

g++ libpython3-dev python3-numpy python3-pip python3-setuptools pybind11-

dev, this will install all the toolchains and dependencies required to build GNU

Radio and third-party modules in one step.

2. In the terminal, enter: git clone https://github.com/HAROGIC-Technologies/gr-

htra.git to download the HTRA OOT module(Alternatively, the gr-htra folder may

be obtained directly from the Linux\HTRA_Gnuradio_Examples folder within the

accompanying documentation.);

https://github.com/HAROGIC-Technologies/gr-htra.git
https://github.com/HAROGIC-Technologies/gr-htra.git

HTRA API Example Usage Guide 137

3. In the terminal, enter cd gr-htra to navigate to the root directory of the HTRA

OOT module;

4. Enter mkdir build && cd build to create a build directory under the project root

and switch to it;

5. Enter sudo cmake .. && sudo make install to configure the project, compile the

source code, and install the module to the system directory.

6. Copy the instrument's calibration files into the gr-htra/CalFile folder, then run cd..

&& sudo sh CopyCalFile.sh to install the device calibration files.

HTRA API Example Usage Guide 138

 Uninstalling the HTRA OOT Module

To uninstall the HTRA OOT module along with its related configuration files, run the

following command in the gr-htra folder: sudo sh uninstall.sh.

 Running the HTRA OOT Module

The following section demonstrates the operation of the HTRA OOT module using a

USB device as an example.

1. Connect the device to the host computer, then enter lsusb in the terminal. If the

output shows IDs 6430, 3675, 04b5, or 367f, it indicates that the instrument is

correctly connected to the host.

(If the host is a virtual machine, after a successful connection, you can check the

hardware device icon at the bottom-right corner of the VM interface. Hovering the

mouse over the icon should display the HTRA logo, confirming that the device is

connected to the VM. Also, ensure that the USB compatibility setting is set to USB 3.1

to guarantee proper device operation.)

2. In the terminal, navigate to the built gr-htra folder and enter gnuradio-

companion to launch the graphical interface;

HTRA API Example Usage Guide 139

3. In the GNU Radio Companion graphical interface, press Ctrl+F to open the

search box. Enter HTRA in the top-right corner and press Enter to load HTRA: IQ

Source into the flowgraph;

4. The HTRA: IQ Source module is used to receive IQ data streams from the

HAROGIC spectrum analyzer and process them within GNU Radio. You can

double-click the HTRA: IQ Source module to open its configuration window,

modify or select the desired parameter values, and then click OK at the bottom

of the window to apply the changes;

◼ Physical Interface: Interface type. Select either USB or Ethernet (ETH) from the

drop-down menu to connect to the device

HTRA API Example Usage Guide 140

◼ Device Number: Set different device numbers when multiple devices are

connected simultaneously

◼ Center Frequency: Center frequency, ranging from 9 kHz to the device's cutoff

frequency

◼ Sample rate: Sampling rate

◼ Decimation Factor: Decimation factor, selectable from the drop-down menu in

the module settings

◼ Reference Level: Reference level, ranging from -50 to +23 dBm

◼ Data Format: Data format used for the acquired IQ data

5. In the search box, enter QT GUI Frequency Sink and press Enter to add the

spectrum display module. Connect the input of this module to the output of the

HTRA: IQ Source module to display the IQ signal spectrum in real time;

6. Click "File" -> "Save" to save the file as Spectrum_display, then click the Run

button at the top of the graphical interface to view the spectrum of the input

signal.

HTRA API Example Usage Guide 141

 Acquiring IQ Stream

This example demonstrates how to acquire IQ data and provides the IQ time-domain

waveform, spectrum, and waterfall display.

The following example uses a 1 GHz, -20 dBm single-tone signal to illustrate the

process.

1. Open a terminal in the built gr-htra folder, type gnuradio-companion, and press

Enter to launch the graphical interface;

2. In the pop-up graphical interface, click "File" -> "Open" -> "Examples" ->

"IQ_streaming.grc" - > "Open" to load the IQ straming acquisition example from

the routine;

3. Keep the parameters at their default configuration. You can double-click the

corresponding QT GUI Range module and Variable parameter node at the top of

the example to modify the relevant parameters in the HTRA: IQ Source module

(Note: the Decimate Factor must be consistent between the Variable and the

module); Also, double-click the HTRA: IQ Source module itself to select the

appropriate the interface device and data type.

HTRA API Example Usage Guide 142

4. Click the Run button at the top of the GNU Radio Companion graphical interface

to view the time-domain waveform, spectrum, and spectrogram corresponding

to the IQ stream;

HTRA API Example Usage Guide 143

 AM Demodulation

This example is used for AM signal demodulation and demonstrates the time-domain

waveform, spectrum, and demodulated audio waveform of the AM signal. It

demodulates AM signals with a modulation rate ≤ 15 kHz only. You can design or adjust

the demodulation chain according to your actual requirements.

The following uses the demodulation of a 1 GHz, -20 dBm AM signal with a symbol rate

of 5 kHz and a modulation depth of 50% as an example.

1. Refer to steps 1 to 2 in the "Acquiring IQ Stream" chapter to open the

"AM_demod.grc" example;

2. The Center Frequency and Reference Level maintain their default configuration.

You can double-click the corresponding QT GUI Range block and adjust the

"Default Value" in its properties window to adapt to AM signals of different

frequencies and power levels.

3. Click the Run button at the top of the GNU Radio Companion graphical interface

to view the IQ time-domain plot, spectrum, and demodulated audio waveform of

the AM signal.

HTRA API Example Usage Guide 144

 FM Demodulation

This example is used for demodulating FM broadcast signals and demonstrates the

time-domain waveform, spectrum, and demodulated audio waveform of the FM signal.

The following uses the demodulation of a 97.5 MHz broadcast signal as an example.

1. Refer to steps 1 to 2 in the "Acquiring IQ Stream" chapter to open the

"FM_demod.grc" example;

2. The Center maintains its default configuration. You can double-click the QT GUI

Range block corresponding to "center_freq" and adjust the "Default Value" in its

properties window to demodulate FM broadcast signals at different frequencies.

3. Click the Run button at the top of the GNU Radio Companion graphical interface

to view the IQ waveform, spectrum, and demodulated time-domain waveform of

the FM signal.

HTRA API Example Usage Guide 145

 QPSK Demodulation

This example is used for demodulating QPSK signals and demonstrates the IQ time-

domain waveform, spectrum, and demodulated constellation diagram of the QPSK

signal, facilitating real-time verification of symbol synchronization, carrier recovery,

and signal quality for users.

The following uses the demodulation of a 1 GHz, -20 dBm QPSK signal with a symbol

rate of 1 MHz and a filter alpha (roll-off factor) of 0.35 as an example.

1. Refer to steps 1-2 in the "Acquiring IQ Stream" chapter to open the

"QPSK_demod.grc" example;

2. Double-click the Variable parameter nodes corresponding to "decimate_factor"

and "symbol_rate", and modify their respective "Value" in the properties window

to set the Decimate Factor to 16 and the Symbol Rate to 1 MHz. Then, double-

click "HTRA: IQ Source" and update the value of the Decimate Factor in the pop-

up window. Keep other parameters at their default configuration. You can double-

click other QT GUI Range or Variable nodes to adjust Center, Ref.Level,

SampleRate, Decimate Factor, and Filter Alpha as needed to adapt to different

signals.

Note: SampleRate / Decimate Factor ≥ 4 * Symbol Rate

3. Click the Run button at the top of the GNU Radio Companion graphical interface

to view the time-domain graph, spectrum, and demodulated constellation

diagram corresponding to the IQ stream;

HTRA API Example Usage Guide 146

 QAM Demodulation

This example is used for demodulating QAM16 and QAM64 signals and demonstrates

the IQ time-domain waveform, spectrum, and demodulated constellation diagram of

the QAM signal.

The following uses the demodulation of a QAM16 signal with a center frequency of 1

GHz, a reference level of -20 dBm, a symbol rate of 300 kHz, and a filter alpha (roll-off

factor) of 0.35 as an example.

1. Refer to steps 1-2 in the "Acquiring IQ Stream" chapter to open the

"QAM_demod.grc" example;

2. Double-click the Variable parameter node corresponding to "symbol_rate", and

modify its "Value" in the properties window to set the Symbol Rate to 300 kHz.

Keep other parameters at their default settings. You can double-click other QT

GUI Range or Variable nodes to adjust Center, Reference Level, SampleRate,

Decimate Factor (setting rules refer to the QPSK Demodulation chapter), and

Filter Alpha as needed to adapt to different signals;

HTRA API Example Usage Guide 147

3. Click the Run button at the top of the GNU Radio Companion graphical interface

to view the time-domain graph, spectrum, and demodulated constellation

diagram corresponding to the IQ stream.

 DAB Demodulation

The DBA demodulation example relies on the open-source project gr-dab. Please

install the gr-dab project according to the following chapter before running it.

Enter the following commands in the terminal sequentially to install gr-dab and its

required dependencies:

sudo apt-get update

sudo apt-get install gnuradio libboost-all-dev libcppunit-dev libfaad-dev

git clone https://github.com/gnuradio/gr-dab.git

cd gr-dab

mkdir build

cd build

cmake ..

make

sudo make install

HTRA API Example Usage Guide 148

sudo ldconfig

 WLAN Signal Demodulation

The WLAN demodulation example relies on the open-source projects gr-ieee802-11

and gr-foo. Please install these projects according to the following chapter before

running it.

This example demonstrates the demodulation of an IEEE 802.11a signal at 2.412 GHz,

–20 dBm reference level, 20 MHz symbol rate, and 12 Mb/s rate.

1. Enter the following commands in the terminal, in sequency, to install gr-foo:

git clone https://github.com/bastibl/gr-foo

cd gr-foo

mkdir build

cd build

cmake ..

make

sudo make install

sudo ldconfig

2. Enter the following commands in the terminal, in sequency, to install gr-ieee802-

11:

git clone https://github.com/bastibl/gr-ieee802-11

cd gr-ieee802-11

mkdir build

cd build

cmake ..

make

sudo make install

sudo ldconfig

sudo sysctl -w kernel.shmmax=2147483648

3. Refer to steps 1 to 2 in the chapter "Acquiring IQ Stream" to open the

"WLAN_demod.grc" example;

HTRA API Example Usage Guide 149

4. Click the Run button at the top of the GNU Radio Companion graphical interface.

Set the "freq" parameter in the result display window to 1|2412.0|11g to view

the corresponding time-domain graph, spectrum, and demodulated constellation

diagram of the IQ stream.

HTRA API Example Usage Guide 150

9.8 Java (to be supplemented)

It is important to note that when writing programs in Java to control devices on a Linux

system, the CalFile folder needs to be placed in the same directory as the Java

interpreter.

HTRA API Example Usage Guide 151

	Version Management
	1. C/C++
	1.1 Configure Development Environment
	1.2 Usage Process for C++ Examples
	1.2.1 Usage of General C++ Examples
	1.2.2 Use of the AM/FM demodulation example
	1.2.3 Usage of the recording and playback example

	1.3 Device-related
	1.3.1 Get device information
	1.3.2 Device standby
	1.3.3 GNSS-related
	1.3.4 Get and modify the IP address of the NX device
	1.3.5 Mode switching time consumption

	1.4 SWP mode
	1.4.1 Standard spectrum acquisition
	1.4.2 Simplified configuration mode
	1.4.3 Maximum and minimum hold
	1.4.4 Average Trace
	1.4.5 Automatic Configuration Measurement
	1.4.6 Frequency Compensation
	1.4.7 Function execution time, sweep speed, and throughput
	1.4.8 Obtain spectrum peak values
	1.4.9 Signals and Spurious
	1.4.10 Simultaneous Acquisition of Spectrum and IQ
	1.4.11 Reading SWP Stream Disk Data from Application Software
	1.4.12 Using GNSS 10MHz Reference Clock
	1.4.13 External Trigger Mode
	1.4.14 Trace Alignment Method
	1.4.15 Number of Spectrum Frames Obtainable within a Certain Time
	1.4.16 External Trigger Calibration of Internal 10MHz Reference Clock
	1.4.17 Phase noise measurement
	1.4.18 Channel power measurement
	1.4.19 Adjacent Channel Power Ratio Measurement
	1.4.20 Percentage occupied bandwidth Measurement
	1.4.21 XdB Occupied Bandwidth Measurement
	1.4.22 IM3 measurements
	1.4.23 Frequency interval matching RBW
	1.4.24 Using an External 10MHz Reference Clock

	1.5 IQS Mode
	1.5.1 Obtain Fixed Number or Continuous Stream of IQ Data
	1.5.2 Simplified configuration mode
	1.5.3 IQ data converted to voltage V units
	1.5.4 Time taken to issue configuration and acquire IQ
	1.5.5 IQ to Spectrum Data
	1.5.6 IQ to Spectrum (using liquid library version)
	1.5.7 FM Demodulation Playback
	1.5.8 FM Demodulation Data Analysis
	1.5.9 AM Demodulation Playback
	1.5.10 AM Demodulation Data Analysis
	1.5.11 Digital Downconversion
	1.5.12 Digital Low-Pass Filter
	1.5.13 Audio Analysis
	1.5.14 Read the IQS stream disk data from Application Software
	1.5.15 Record IQ data in .wav format
	1.5.16 .wav changed to .csv
	1.5.17 Streaming and reading IQ data
	1.5.18 Multithreaded acquisition, processing, and streaming of IQ data
	1.5.19 GNSS1PPS trigger
	1.5.20 IQS multi-device synchronization
	1.5.21 External Trigger
	1.5.22 Timer Trigger
	1.5.23 Level Trigger(pre-trigger)
	1.5.24 Level Trigger (Trigger delay)
	1.5.25 Using GNSS 10MHz Reference Clock
	1.5.26 Fixed Step Multi-Frequency IQ Data Acquisition

	1.6 DET Mode
	1.6.1 Obtain detection data for fixed points or continuous streams.
	1.6.2 Simplified configuration mode
	1.6.3 Read the DET stream disk data of Application Software
	1.6.4 Pulse detection (to be opened later)

	1.7 RTA mode
	1.7.1 Obtain real-time spectrum data for fixed points or continuous stream
	1.7.2 Simplified configuration mode
	1.7.3 Read the RTA stream disk data of Application Software
	1.7.4 Time consumption of each frame of data in RTA mode

	1.8 ASG Signal Source (optional)
	1.8.1 Output single tone/sweep/power scan signals

	2. Digital Demodulation (optional)
	3. Qt
	3.1 Configure Development Environment
	3.2 Qt Example Usage Process
	3.3 Qt Example Description

	4. Python
	4.1 Configure Development Environment
	4.2 Python Example Usage Process
	4.3 Python Example Description
	4.3.1 Get device information
	4.3.2 Obtain Standard Spectrum Data
	4.3.3 Obtain IQ Data for a Fixed Number of Points or Duration
	4.3.4 Obtain Power Detection Data for a Fixed Number of Points or Duration
	4.3.5 Obtain real-time spectrum data for a fixed number of points or duration
	4.3.6 IQ to Spectrum Data
	4.3.7 GNSS Related

	5. Matlab
	5.1 Configure Development Environment
	5.1.1 Install MSYS2
	5.1.2 Configure Matlab
	5.1.3 Description of call htra_api.dll

	5.2 Matlab example usage process
	5.3 Introduction to Accompanying Examples
	5.3.1 Get device information
	5.3.2 Obtain Standard Spectrum Data
	5.3.3 Create multiple markers to display the frequency and power of the markers.
	5.3.4 Collect the peak spectrum every five minutes.
	5.3.5 Obtain continuous stream or fixed number of IQ data.
	5.3.6 The acquired IQ data is converted into spectrum data.
	5.3.7 Acquire continuous stream or fixed number of power detection data.
	5.3.8 Acquire continuous stream or fixed duration real-time spectrum data.
	5.3.9 Internal signal source output signal.
	5.3.10 Lock GNSS antenna and DOCXO oscillator.
	5.3.11 Multi-machine synchronization

	6. C#
	6.1 Configure Development Environment
	6.1.1 Development Environment Confirmation
	6.1.2 Project Setup

	6.2 C# Example Usage Process
	6.3 C# Example Descriptions
	6.3.1 Get device information
	6.3.2 Obtain Standard Spectrum Data
	6.3.3 Obtain IQ Data for a Fixed Number of Points or Duration
	6.3.4 Obtain Power Detection Data for a Fixed Number of Points or Duration
	6.3.5 Obtain real-time spectrum data for a fixed number of points or duration
	6.3.6 Output single-tone signal
	6.3.7 AM/FM Demodulation
	6.3.8 IQ to Spectrum Data
	6.3.9 Low-pass filtering
	6.3.10 Digital Downconversion
	6.3.11 Phase noise test

	7. Java (to be supplemented)
	8. Labview
	8.1 Configure Development Environment
	8.1.1 Export library functions from htra_api.dll using LabVIEW
	8.1.2 Using the API in the LabVIEW environment
	8.1.3 Use the newly exported library functions in an existing project.
	8.1.4 Generate an exe from the vi in Labview

	8.2 The usage process of Labview examples
	8.3 Labview Example Description
	8.3.1 Get device information
	8.3.2 Standard spectrum acquisition
	8.3.3 Obtain IQ Data for a Fixed Number of Points or Duration
	8.3.4 Streaming and reading IQ data
	8.3.5 IQ to Spectrum Data
	8.3.6 Digital Downconversion
	8.3.7 Audio Analysis
	8.3.8 Obtain Power Detection Data for a Fixed Number of Points or Duration
	8.3.9 Obtain real-time spectrum data for a fixed number of points or duration
	8.3.10 ASG Signal Source Output Signal

	9. Linux
	9.1 Environment Version Compatibility Self-Check
	9.2 Accompanying documentation
	9.2.1 HTRA_C++_Examples
	9.2.2 HTRA_Qt_Examples
	9.2.3 HTRA_Python_Examples
	9.2.4 HTRA_Gnuradio
	9.2.5 Install_HTRA_SDK

	9.3 Driver file configuration
	9.4 C++ example usage and project creation
	9.4.1 C++ example usage
	9.4.2 C++ Project Creation and Compilation
	9.4.3 C++ Project Cross-Compilation

	9.5 Using Qt Examples and Project Creation
	9.5.1 Using Qt Examples
	9.5.2 Qt Project Creation and Compilation
	9.5.3 Cross-compiling Qt projects

	9.6 Usage of Python examples and project creation
	9.6.1 Usage of Python examples
	9.6.2 Python Project Creation

	9.7 GNU Radio Module Construction and Use
	9.7.1 Architecture and Operating System Requirements
	9.7.2 Installing and Configuration GNU Radio
	9.7.3 Building the HRTA OOT Module
	9.7.4 Uninstalling the HTRA OOT Module
	9.7.5 Running the HTRA OOT Module
	9.7.6 Acquiring IQ Stream
	9.7.7 AM Demodulation
	9.7.8 FM Demodulation
	9.7.9 QPSK Demodulation
	9.7.10 QAM Demodulation
	9.7.11 DAB Demodulation
	9.7.12 WLAN Signal Demodulation

	9.8 Java (to be supplemented)

